ALI Optical Subsystem Technology

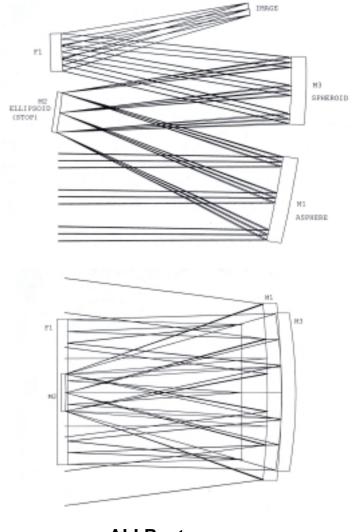
Presented by:

Joe Robichaud SSG Precision Optronics, Inc. 65 Jonspin Rd Wilmington, MA 01887 (978) 694-9991 jlr@ssginc.com

Technology Description

Optical Design

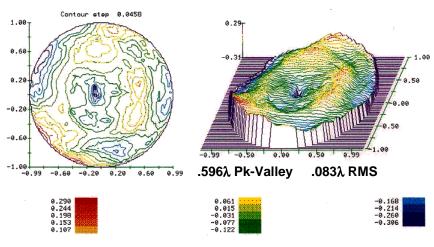
- Wide field of view
- Flat image plane
- Low distortion
- Excellent image quality
- SiC Materials Technology
 - Hot Pressed SiC Optics
 - Reaction Bonded SiC Optics

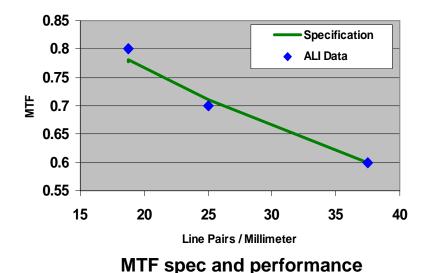

Optical Design Overview

Optical Design Form

- All reflective Cooke triplet
- On axis aperture
- Off axis field of view
- Wide field of view: 1.26 deg x 15 deg set to accommodate FPA
- Non-relayed (no intermediate image)
- Aperture stop on secondary mirror
- Constrained to be near telecentric (< 2.5 deg non-parallel chief rays) in order to maintain standard spectral filter requirements
- Flat image plane
- Low distortion (mappable to $< 10 \mu m$)
- Excellent image quality (MTF > 0.6 @ 37.5 lp/mm)

Optical Components

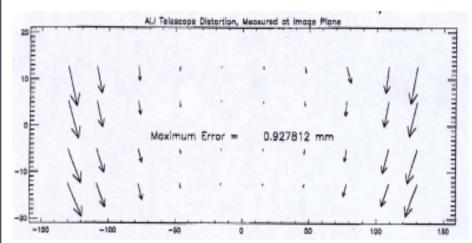

- Primary Mirror: Concave general asphere
- Secondary Mirror: Convex ellipsoid
- Tertiary Mirror: Concave sphere



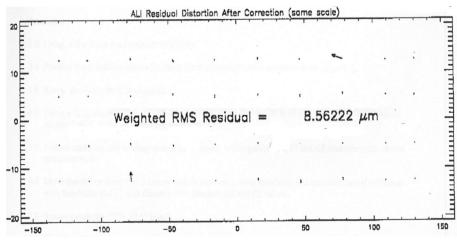
Optical Performance Summary (Image Quality)

On Axis, system level WFE

• System Level Wavefront Error

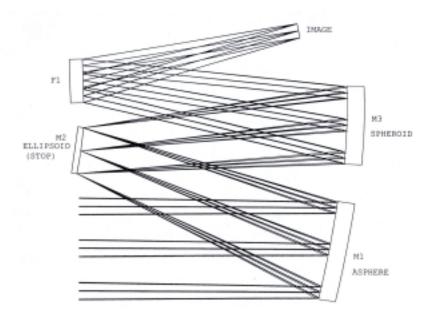

- WFE derived from MTF specification using Code V
- Required system WFE (@ temp) < 0.15 λ RMS (@ 0.63 μ m)
- 12 Field points tested, System WFE (@ temp) 0.089 0.148 λ RMS (@ 0.63 μ m)

System Level MTF


- MTF performance projected from wavefront maps input specification using Code V
- System meets or exceeds spec at 18.75 and 37.5 lp/mm

Optical Performance Summary (Distortion)

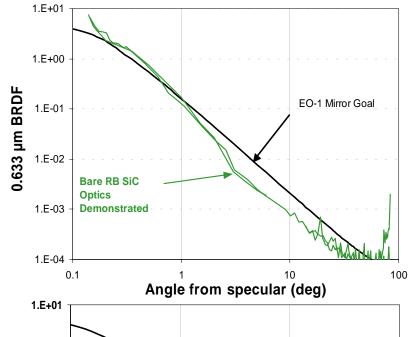
Distortion Map Prior to Correction

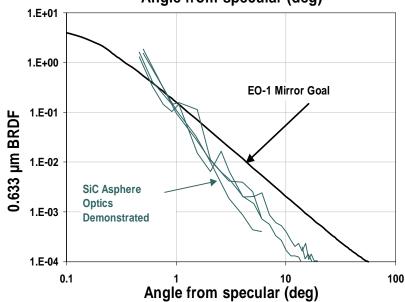

Distortion Map After Correction

• Optical Distortion

- Distortion measured by mapping the angular locations of 40 points on a scribed target through the ALI optical system
- Uncorrected data shows maximum distortion vector length of 928 μm
- Cubic polynomial data correction (Dr. David Hearn, MIT/LL) brings residual distortion values down below 9 µm

Optical Performance Summary (Stray Light 1 of 2)




ALI Raytrace

System Level Stray Light Performance

- Optical design optimized to provide excellent image quality, low distortion, and near telecentric chief rays over a wide FOV
- Non-reimaged design form is not well suited to stray light suppression
- As a result, system level stray light performance is dominated by mirror scatter
- ALI flight optics do not meet system level stray light specifications

Optical Performance Summary (Stray Light 2 of 2)

Component BRDF Performance

- Component level BRDF, consistent with all ALI stray light requirements has been demonstrated through a NASA funded technology program
- Silicon clad SiC aspheric optics and uncoated SiC flat optical surfaces demonstrated to have BRDF which will meet all ALI requirements
 - Multiple optics demonstrated, including full scale, ALI primary mirror

Optical Performance Summary

- ALI Optical design form optimized to meet a number of stressing requirements
 - Wide FOV, low distortion, flat field, near-telecenticity, excellent image quality
- ALI SiC optical system meets or exceeds most of the telescope requirements

Component level surface figure

_ ..

Reflectivity

Focal length

Field of view

Aperture uniformity

Distortion map over FOV

Angular resolution

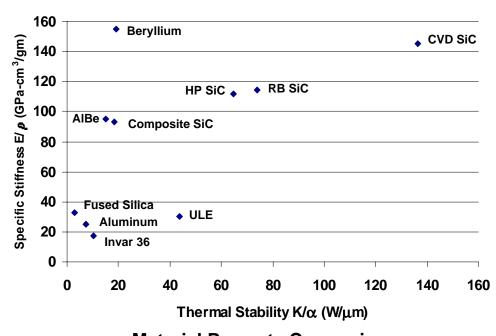
Mechanical stability

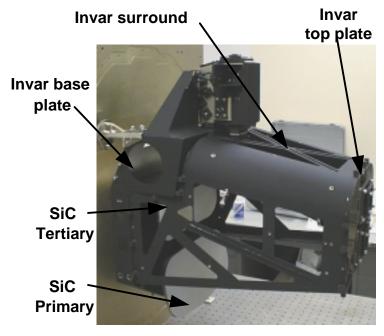
Point spread function

Thermal stability

System throughput

Size


Image quality over FOV


Weight

- The one exception noted is the system stray light performance of the system and component level BRDF of SiC optics
 - SSGPO has demonstrated that this is not a limitation associated SiC materials by producing a number of SiC optics (flats and aspheres) which meet all ALI stray light requirements

Silicon Carbide Material Overview

Material Property Comparison ALI Optical Subsystem

Combination of SiC and Invar materials used for ALI Optical Subsystem

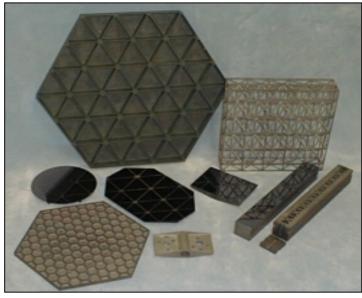
- Specific Stiffness of SiC (HP, RB, CVD) 70% 90% of Beryllium
- Thermal Stability of SiC 3x 1.5x better than ULE glass
- Hot Pressed SiC suitable for simple "slab"-type geometries
- Invar structure selected for its good CTE match to SiC and its good durability

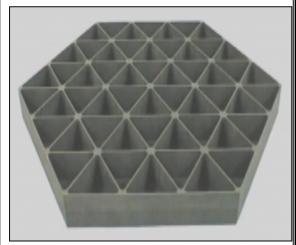


Hot Pressed Silicon Carbide Optics

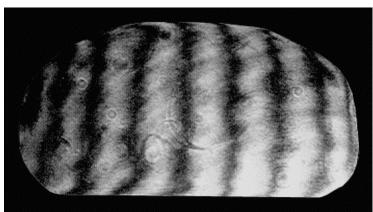
ALI Primary Mirror

- Hot Pressed SiC materials used for ALI flight optics
 - HP SiC has flight heritage
 - SSGPO developed MICAS SiC flight system for NASA DS-1 mission from HP materials
 - HP SiC has excellent material properties
 - Optical grade HP can be figured and finished to produce good quality flat and spherical optics
 - Aspheric optical surfacing requires a silicon cladding
 - HP SiC materials produced in simple slab shapes
 - All lightweighting must be done by aggressive diamond machining
 - Costly and time consuming machining requirements



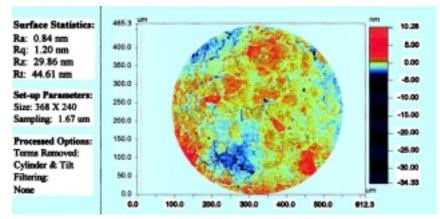

ALI Secondary Mirror

Reaction Bonded Silicon Carbide Optics



RB SiC Optical and Structural Components

- Reaction Bonded SiC suitable for more aggressively lightweighted optical and structural requirements
 - RB SiC maintains excellent material properties while allowing complex structures to be produced with little to no post-machining
 - RB SiC can be figured and finished to produce good quality flat and spherical optics
 - Aspheric optical surfacing requires a silicon cladding



Silicon Carbide Optical Properties

Spare ALI Primary Mirror Surface Figure

- Silicon coated SiC Asphere
- •0.035 λ RMS
- •0.294 λ Pk-valley

Bare RB SiC Surface Finish

- •Flat
- •12 Angstroms RMS
- Hot pressed and reaction bonded SiC materials demonstrated to provide excellent surface figures and surface finishes
 - Bare flats and spheres and silicon coated aspheres demonstrated on numerous programs
 - Surface finish achievable does depend the optical surface being polished
 - RB or HP SiC polishes to 10-15 Angstroms RMS routinely
 - Silicon coated SiC polishes to 20-30 Angstroms RMS routinely

Silicon Carbide Material Summary

- SiC materials have been demonstrated to be suitable for LDCM and other future ALI-like missions
 - Surface figure and image quality demonstrated with ALI flight system
 - Surface scatter demonstrated with spare ALI flight optic
- Combination of SiC and Invar materials used for ALI Optical Subsystem
 - Other alternatives can be used to better benefit from the excellent lightweighting capabilities possible with SiC materials
 - Hot pressed SiC optics and structure applied to MICAS DS-1 optical subsystem with good success
 - Reaction bonded SiC optics and structures allow a higher degree of lightweighting
 - ALI optical design can be implemented with more traditional optical materials
 - SSGPO has extensive experience in producing off-axis aspheric optics in aluminum, beryllium and low-expansion glasses

Optical Subsystem Technology Summary

- ALI optical design well suited to address the unique demands associated with multi-spectral/hyper-spectral optical systems
 - Excellent image quality and MTF
 - Low distortion
 - Near telecentric
 - Wide field of view
- SiC materials demonstrated to meet all ALI optical requirements
 - Surface figure and image quality demonstrated with ALI flight system
 - Surface scatter demonstrated with spare ALI flight optic
- RB SiC materials can be applied to provide additional program benefits
 - Significant cost savings
 - Significant weight savings

